أنواع المعجلات النووية وتركيبها

• أصناف المعجلات ( المسارعات )النووية
• الأجزاء الرئيسية للمفاعل النووي
• أنواع المعجلات

الهدف من المعجلات النووية(المسارعات) ، توجيه الأجسام المشحونة في شكل شعاع بإكسابه طاقة حركة باتجاه الهدف من خلال تطبيق مجالات كهربية ومغناطيسية، وهناك عدة أنواع من هذه المعجلات.

تكون المعجل بصفة عامة من مصدر للجسيمات المشحونة مثل الكترونات منبعثه من فتيلة ساخنة او من ذرات متأينة حيث تنطلق هذه الجسيمات المشحونة تحت تأثير فرق جهد كهربي يصل إلى 10 مليون فولت.

يتم تحديد مسار هذه الجسيمات المعجلة لتكون شعاع ينطلق باتجاه الهدف, ويكون داخل المعجل مفرغ من الهواء (تحت ضغط منخفض) لتفادي تشتت الجسيمات المعجلة عند تصادمها مع ذرات الهواء.

أصناف المعجلات ( المسارعات )النووية

تصنف المعجلات إلى ثلاثة اقسام بناء على الطاقة المستخدمة للتعجيل وهي على النحو التالي:

(1) المعجلات المنخفضة الطاقة: حيث تنتج جسيمات معجلة بطاقة تصل تتراوح بين 10 إلى 100 مليون الكترون فولت وفي اغلب الاحيان تستخدم هذه المعجلات لدراسة تشتت الجسيمات المعجلة بتفاعلها مع مادة الهدف

(2) المعجلات ذات الطاقة المتوسطة: حيث تنتج شعاع من الجسيمات المعجلة بطاقة تفوق 100 مليون الكترون فولت لتصل 1000 مليون الكترون فولت. وعند هذه الطاقة يتم دراسة تصادم النيوكليونات مع أنوية العناصر، سينتج عن هذه التصادمات توليد جسيمات اخرى مثل الميونز وفي هذا المعجلات يتم دراسة القوى النووية والتحقق تركيب النواة.

(3) المعجلات ذات الطاقة العالية: وهي تنتج شعاع من الجسيمات المعجلة بطاقة تفوق 1000 مليون الكترون فولت. ويكون الغرض من هذه المعجلات هو انتاجح جسيمات جديدة من خلال اصطدام هذه الجسيمات المعجلة بأنوية العناصر ومن ثم دراسة خصائص الجسيمات الناتجة
وقد تم تصميم معجلات نووية تصل طاقة التعجيل فيها إلى 10000000 الكترون فولت.

الأجزاء الرئيسية للمفاعل النووي

(1) مصدر الجسيمات المشحونة Ion source: وهو المصدر الرئيسي للجسيمات المعجلة ويتكون من غاز متأين بواسطة التفريغ الكهربائي ويتم استخلاص الجسيمات ذات الشحنة الموجبة من خلال الكترود سالب ذو جهد 10000 فولت.

( 2 ) ناقل الشعاع beam optics: وهو عبارة عن عدد من الموجهات المكونة من اجهزة كهربية ومغناطيسية لتوجيه الجسيمات المعجلة في المسار المحدد لها داخل المعجل وهي بمثل العدسات في الضوء وتعتمد على قوة لورنز Lorentz force

(3) الهدف Target: وهو المادة التي توضع في نهاية المعجل بهدف التجربة تحت الدراسة فمثلاً تجربة nuclear spectroscopy حيث يتم دراسة مستويات الطاقة ومساحة المقطع فإن الهدف في هذه الحالة يكون شريحة سمكها 10ميكرون، اما في حالة دراسة انتاج جسيمات ثانوية من تصادم الانوية المعجلة مع الهدف فإن الهدف يكون سميك يصل سمكه إلى 10 سنتميتر بحيث يمتص طاقة الجسيمات المعجلة. وفي كلا الحالتين يتم تبريد الهدف حتي لاتتغير درجة حرارته مع تصادم الجسيمات المعجلة معه.

(4) الكاشف Detector وهي الجزء الأساسي الذي تعتمد عليه القياسات المراد الحصول عليها من التجربة مثل تحديد نوعية الجسيمات الناتجة من التصادم وطاقتها وزمن بقاءها وتوزيعها الزاوي وهذه الكواشف علم قائم بحد ذاته وسنخصص مقالاً منفصلا للحديث عنها.

أنواع المعجلات

(1) المعجل الكهروستاتيكي Electrostatic accelerator
(2) معجل السكلترون Cyclotron accelerator
(3) المعجل الخطي Linear accelerator
(4) معجل السنكتورن Synchrotrons
(5) المعجل التصادمي Colliding-Beam accelerator
المعجل الكهروستاتيكي Electrostatic accelerator

ابسط انواع المعجلات التي تستخدم لتعجيل الجسيمات المشحونة خلال فرق جهد ثابت من خلال العلاقة E = qV حيث V فرق جهد التعجيل ويصل إلى 10 مليون فولت وq شحنة الجسيمات المعجلة وE طاقة الحركة للجسيمات.

وهذا يعني ان الطاقة التي يمكن ان يكتسبها الجسيم المعجل تصل إلى 10 مليون الكترون فولت لكل وحدة شحنة وهذه الطاقة كافية لدراسة التركيب النووي للنواة.

اول معجل تم تصميمه على هذا الاساس كان في 1932 بواسطة العالمان Cockcroft and Walton حيث وصل فرق جهد التعجيل إلى 800 الف فولت واعتمد مبدأ عمله على شحن مكثفات على التوازي ومن ثم تحويلها إلى توصيل على التوالي من خلال الدائرة

وفي الوقت الحالي فإن هذا النوع من المعجلات يعتمد على مولد فانديجراف الذي طوره العالم Van de Graaff في عام 1932

وتعتمد فكرة عمل مولد فانديجراف على مبادئ الكهربية الساكنة حيث نعلم ان الشحنة الكهربية تستقر على سطح الموصل في الحالة الكهروستاتيكية وتنقل الشحنة الكهربية من خلال حزام من مادة عازلة وفي اغلب الاحيان من الحرير ويحصل الحزام على الشحنة الكهربية من جهاز corona discharge وهو رأس مدبب من مادة موصلة مطبق عليه فرق جهد عالي يصل الى 20 الف فولت وعند الرأس المدببة حيث تزداد كثافة الشحنة علية يحدث تفريغ كهربي يعمل على تأيين الهواء فتندفع الايونات الموجبة بقوة التنافر في اتجاه الحزام المتحرك حاملاً شحنة موجبة إلى القشرة الكروية التي تشكل مكثف كهربي من الأرض.


وهذه فكرة عمل هذا المولد فعندما يتم شحن الموصل الداخلي تنتقل الشحنة إلى القشرة الكروية المتصلة مع الموصل الداخلي وتستقر الشحنة على السطح الخارجي للقشرة وتعتمد قيمة الشحنة على العلاقة
V = Q/C
حيث C سعة المكثف وQ الشحنة و V فرق الجهد الناتج

ومن الناحية النظرية فإنه يمكن ان يزداد الجهد الكهربي إلى مالانهاية لان سعة المكثف لانهائية وكلما ازدادت قيمة الشحنة ازدادت قيمة الجهد ولكن من الناحية العملية فإن قيمة عالة للجهد الكهربي يؤدي إلى تأيين الهواء ويصبح موصل مما يؤدي إلى وضع حد لزيادة فرق الجهد الكهربي الممكن الحصول عليه.

وللتغلب على هذه المشكلة يتم وضع مولد الفانديجراف في حاوية تحتوي على غاز عازل كهربيا مثل غاز SF6 عند ضغط 10 إلى 20 ضغط جوي.

عن المهندس أمجد قاسم

كاتب علمي متخصص في الشؤون العلمية عضو الرابطة العربية للإعلاميين العلميين

شاهد أيضاً

أكبر محطات توليد الكهرباء من الطاقة الشمسية في العالم

تعد محطات توليد الكهرباء من الطاقة الشمسية واحدة من الحلول الرائدة لتحقيق التنمية المستدامة وتقليل …

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *